Chebyshev domain truncation is inferior to fourier domain truncation for solving problems on an infinite interval

نویسنده

  • John P. Boyd
چکیده

"Domain truncation" is the simple strategy of solving problems on y E [ o o , oo] by using a large but finite computational interval, [ L , L ] . Since u(y) is not a periodic function, spectral methods have usually employed a basis of Chebyshev polynomials, Tn(y/L). In this note, we show that because u(_+ L) must be very, very small if domain truncation is to succeed, it is always more efficient to apply a Fourier expansion instead. Roughly speaking, it requires about 100 Chebyshev polynomials to achieve the same accuracy as 64 Fourier terms. The Fourier expansion of a rapidly decaying but nonperiodic function on a large interval is also a dramatic illustration of the care that is necessary in applying asymptotic coefficient analysis. The behavior of the Fourier coefficients in the limit n --* ~ for fixed interval L is never relevant or significant in this application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder

In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...

متن کامل

Fourier-Galerkin domain truncation method for Stokes' first problem with Oldroyd four-constant liquid

Using the Fourier–Galerkin method with domain truncation strategy, Stokes’ first problem for Oldroyd four-constant liquid on a semi-infinite interval is studied. It is shown that the Fourier–Galerkin approximations are convergent on the bounded interval. Moreover, an efficient and accurate algorithm based on the Fourier–Galerkin approximations is developed and implemented in solving the differe...

متن کامل

A Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method

Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...

متن کامل

An Axisymmetric Contact Problem of a Thermoelastic Layer on a Rigid Circular Base

We study the thermoelastic deformation of an elastic layer. The upper surface of the medium is subjected to a uniform thermal field along a circular area while the layer is resting on a rigid smooth circular base. The doubly mixed boundary value problem is reduced to a pair of systems of dual integral equations. The both system of the heat conduction and the mechanical problems are calculated b...

متن کامل

Optimized Sponge Layers, Optimized Schwarz Waveform Relaxation Algorithms for Convection-diffusion Problems and Best Approximation

When solving an evolution equation in an unbounded domain, various strategy have to be applied, aiming to reduce the number of unknowns and of computation, from infinite to a finite but not too large number. Among them truncation of domains with a sponge boundary and Schwarz Waveform Relaxation with overlap. These problems are closely related, as they both use the Dirichlet-to-Neumann map as a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1988